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Introduction

brian crystalline basement of the Santander Massif.

thermal fluids have not been yet defined.

La Bodega (LB) and La Mascota (LM) deposits (inferred resources of 3.47 Moz Au, 19.2 Moz Ag and 84 .4
Mibs Cu at 2 g/t Au cut off, Altmann et al., 2010) are located in the California-Vetas Mining District
(CVMD), 35 km NE of Bucaramanga, in the Eastern Cordillera of Colombia (Fig 1).

The deposits have characteristics of epithermal and porphyry-style deposits but are hosted in the Precam-

The principal host to mineralization is the Bucaramanga Gneiss of Proterozoic age which is cut by Juras-
sic muscovite-bearing granite dikes and intrusive bodies (Fig. 2). The mineralization exhibits prominent
NE-trending, NW-dipping structural control. LB mineralization is mainly composed of porphyry-style veins
(Fig. 8) and minor silicified breccias (Fig. 3) while LM mineralization is largely contained in multi-phase hy-
drothermal breccias (Fig 4) with minor vein zones adjacent to the breccias.

The area has undergone intense exploration in recent years, nevertheless, origin and nature of the hydro-

This project aims to comprehensively describe of the geology, alteration and mineralization of LB and LM,
define the paragenetic sequence for the mineralization events and make a comparison between the two

deposits, and define origin and nature of the mineralizing fluids.
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Fig 1. Location of the study area. Top: CYMD general location (Mantilla et al, 2012); Bottom: LB and LM deposits location in
Geology map (after Bernasconi et al., 2010) showing geological sections E=1129350 and E=1130375 location.

Figure 2 (left). Main
rock Types at La
Bodega and La Mas-
cota. A. B. C. Main
gneiss types at La
Bodega and La Mas-
cota: Banded gneiss
(A), mesosome or
amphibolite band (B),
leucosomes or
quariz-feldspar gneiss
(C). D. Pegmatitic
granite. E. Granite. F.
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Fig. 3. (Above) La Bodega typical hydrothermal brec-
cias. A. Monomictic breccia with partially resorbed
clasts. B. Crackle (monomictic) breccia with granite
clasts and Pyrite+Sphalerite+quartz cement. C. Quartz
cement breccia: quartz + wolframite veins and cement

cut by quartz + pyrite + enargite veins.

Fig 4. (Left) La Mascota

Breccia Types based on

breccia physical compo-
% nents and arrange. A.
‘ Clast supported brec-
Bi) & | cia. B. Cement sup-
"| ported breccia.
Cockade-crustiform
texture..C. Matrix to
cement supported brec-
cia. Quartz augen clasts
2% (red line). Tectonic
U foliation. D. Bladed
isad Y texture , contact to
S8R | wolframite-Qz bearing
breccia. E. Vuggy like
A silica in wall rock at
breccia margin. F. Mul-

tiple phases Breccia.

Alteration and Mineralization
Hydrothermal alteration assemblages at LB and LM deposits are typical of those found associated with porphyry and epithermal systems and are directly related to mineralization events. The main alteration types and veins related are: 1) propylitic (Fig. 5A), chlorite and epidote alteration,
best developed in biotite and amphibole bearing protoliths. This alteration is accompanied by epidote veins cross cutting calcite and specularite veins that may carry minor pyrite and chalcopyrite. These veins are present at both LB and LM. 2) phyllic (Fig 5B), muscovite (sericite) - illite al-
teration, commonly accompanied by pyrite and fine crystalline quartz as well as quartz+pyrite veins at LB and quartz+pyrite+hematite veins at LM. These contain the early stages of gold mineralization. 3) silicification (Fig. 3, 4) and advanced argillic (quartz+alunite) (Fig 5C) alteration with
quartz occurring as cement of breccias and as microcrystalline quartz, mostly as part of the mineralized structures and alunite as vein and replacements of silicate minerals. Breccias and vein include colloform and crustiform as well as cockade textures and no significant vuggy quartz altera-
tion has been observed (Fig. 4), Alunite and quartz deposition is related to brecciation and mineralization events at LB and more prominently at LM and is accompanied by the initial quartz+pyrite+copper sulphide vein emplacement. Chalcopyrite and chalcocite are more common at LB (Fig.
8D) while covelite, bornite, chalcopyrite are more common at LM (Fig. 11). The Copper sulfide stage is followed by the emplacement of quartz+pyrite wolframite veins at LM and the emplacement of quartz+pyrite+enargite and other copper-arsenic sulphides at both, LB (Fig. 8E) and LM (Fig.
12). These assemblages contain the late stages of gold mineralization where gold is found mainly as electrum. Late pyrite+sphalerite+alunite>quartz veins (Fig. 13) and drusy quartz cavity fillings have been found at LM but did not introduce significant amount of gold. In the halos of the min-
eralized structures, advanced argillic (alunite and quartz) alteration is overprinting the earlier phyllic alteration. At LB phyllic alteration is more widespread whereas at LM it is confined to the proximity of veins and breccias and only occurs within 10-20 m of those mineralized structures. Propy-
litic (chlorite+epidote) alteration forms a wide envelope around phyllic and quartz-alunite alteration at LM while at LB propylitic alteration is mainly restricted to amphibolite bearing protoliths in the phyllic alteration zone. Epidote in the propylitic assemblage is more common at LM than at LB.
The deposits are characterized by repeated events of fracturing during and after mineralization. Post mineralization fault reactivations generated intensely fractured and gouge-rich fault zones.
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