Application of Geochemical Datasets for Geological Mapping TREK Mapping Project, Central British Columbia

Mineral Deposit Research Unit, The University of British Columbia

INTRODUCTION

Regions covered by llacial till and vegetation are always challenging areas for geological mapping. Enormous
datasests and innovative methods and techniques are utilized to increase confidence and extract more datasests and innovative methods and techniques are utilized to increase confidence and extract more
information for geological maps and exploration purposes. This project aims to clarify and to add more value to
lithological information and bedrock geology of the Trgeting Resources throug Exploration and Knowledge lithological information and bedrock geology of the Targeting Resources through Exploration and Knowledge
(TREK) project. A lithological map was developed from geochemical basal till data by creating a geological classification scheme from existing regional geochemical datasets. After evaluation and quality control of datasests, the uni-variaint data were considered to best define the elements and analytical methods of value from
the existing datataets. Bi-variant and tri--ariant diagrams were used to display and interperet improved geological Ine existing datasets. B -variant and 1 niveriant diagrams were used to display and interpret improved geological statistical characteristics of major oxides, trace and rare earth elements for specific geological units. vector data.

OVERVIEW OF DATASETS

The datasets are till analysis results from the TREK geochemistry project. Two till survey results were processed include:

- Geochemical and Mineralogical Data, TREK Project, Interior Plateau, British Columbia; Geoscience BC, Report Geochemical Reanalysicco, 2014 Al).
Geochemical Reanalysis of Archived Till Samples, TREK Project, Interior Plateau, central BC (parts of NTS 093C, A total of 677 new samples, 1456 archived samples plus quality control samples were analyzed using different methods for minor, trace and oxide of elements. The sas
primary information related to local bedrock (Figure 2). METHODOLOGY
 information as possible from geochememical datasets to
add confidence to lithological interpetations add confidence to lithological interpretations of
bedrock beneath till.
The visualisation and data interpretation is divided to
two major rorups:
wo major groups:
The statistics-base
The statisitic--based
of geochemical DBs
The spatial-based comparison and interpretation of
mation based on DBs processing

Lithology polygons vector layer, extracted from raster layers using Weighted Sum Integration Model (WSIM) is shown
figure 7 and attributed by chemical analyses information figure 7 and attributed by chemical analy
for different rock types from felsic to basic.
Attribute table re-processed and classified for volcanic plutonic/ sedimentary/ metamorphic rocks using database
information and the latest bedrock geology map of TREK information and the latest bedrock geology map of TRE
area. To evaluate the results, rock samples are plotted on the
Ithology layer. area. To evaluat
lithology layer.

CONCLUSION

- Knformatiedge- based integration methods were applied to geoscience datasets to produce new scientific information that gives the epossibility of advanced understanding of geological setting of the area
- The method strongly gives the possibility of sub-unit separation in bedrock units. flexibility to determine the most appropriate lithology boundaries.

Hybrid statistical methods and Geospatial information system (GIS) allows.
to model and interperet the data using the parameters of the real wolld
to model and interpret the data using the parameters of the real world.
to attribute a set of information relevant to the specified geology domain.
o to connect the results to geological characteristics and get the most substantive results from the DBS.

